×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:45 2025
md5 checksum ebed5e78c55e3b8db83531ad7c567619
arch x86_64
build py312h0389eee_0
constrains tensorflow >=2.10.0, lightning>=1.8.1, tiktoken <1, fastai >=2.4.1, boto3 >=1.28.56,<2, boto3 >1, mlflow-skinny <0a0, spacy >=3.3.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, openai <1.0, pytorch >=1.11.0, aiohttp <4, holidays !=0.25, mxnet !=1.8.0, onnx >=1.11.0, shap >=0.42.1, azure-storage-file-datalake >12, torchvision >=0.12.0, pydantic >=1.0,<3, xgboost >=0.82, fastapi <1, google-cloud-storage >=1.30.0, watchfiles <1, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, slowapi >=0.1.9,<1, azureml-core >=1.2.0, uvicorn-standard <1
depends alembic <2,!=1.10.0, click >=7.0,<9, cloudpickle <4, docker-py >=4.0.0,<8, entrypoints <1, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <23, importlib-metadata <8,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <2, packaging <25, pandas <3, protobuf >=3.12.0,<5, pyarrow <16,>=4.0.0, python >=3.12,<3.13.0a0, pytz <2025, pyyaml >=5.1,<7, querystring_parser <2, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 ebed5e78c55e3b8db83531ad7c567619
name mlflow
platform linux
sha1 34a086663adcfc8ae1b6a57cb4570eacd53fac3c
sha256 71dfbb9f1e6fc602d6f401b2f770a4fa05d8f605e905f990281118e573592569
size 5604904
subdir linux-64
timestamp 1715898305741
version 2.12.2