×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:44 2025
md5 checksum b2260c60fd9caff9c040ba7db497f984
arch x86_64
build py311h0389eee_0
constrains tensorflow >=2.10.0, lightning>=1.8.1, tiktoken <1, fastai >=2.4.1, boto3 >=1.28.56,<2, boto3 >1, mlflow-skinny <0a0, spacy >=3.3.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, openai <1.0, pytorch >=1.11.0, aiohttp <4, holidays !=0.25, mxnet !=1.8.0, onnx >=1.11.0, shap >=0.42.1, azure-storage-file-datalake >12, torchvision >=0.12.0, pydantic >=1.0,<3, xgboost >=0.82, fastapi <1, google-cloud-storage >=1.30.0, watchfiles <1, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, slowapi >=0.1.9,<1, azureml-core >=1.2.0, uvicorn-standard <1
depends alembic <2,!=1.10.0, click >=7.0,<9, cloudpickle <4, docker-py >=4.0.0,<8, entrypoints <1, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <23, importlib-metadata <8,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <2, packaging <25, pandas <3, protobuf >=3.12.0,<5, pyarrow <16,>=4.0.0, python >=3.11,<3.12.0a0, pytz <2025, pyyaml >=5.1,<7, querystring_parser <2, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 b2260c60fd9caff9c040ba7db497f984
name mlflow
platform linux
sha1 21fc3ae0e29860dea874a86ed8801cd078523ff1
sha256 dd2a175668f6acf52be6023a94c2b38d8db91228038bfbef10f1ae22385ac250
size 5661714
subdir linux-64
timestamp 1715898361600
version 2.12.2