×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:43 2025
md5 checksum 3778ebaeab20325513ccd5d10ae70388
arch x86_64
build py310h0389eee_0
constrains tensorflow >=2.10.0, lightning>=1.8.1, tiktoken <1, fastai >=2.4.1, boto3 >=1.28.56,<2, boto3 >1, mlflow-skinny <0a0, spacy >=3.3.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, openai <1.0, pytorch >=1.11.0, aiohttp <4, holidays !=0.25, mxnet !=1.8.0, onnx >=1.11.0, shap >=0.42.1, azure-storage-file-datalake >12, torchvision >=0.12.0, pydantic >=1.0,<3, xgboost >=0.82, fastapi <1, google-cloud-storage >=1.30.0, watchfiles <1, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, slowapi >=0.1.9,<1, azureml-core >=1.2.0, uvicorn-standard <1
depends alembic <2,!=1.10.0, click >=7.0,<9, cloudpickle <4, docker-py >=4.0.0,<8, entrypoints <1, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <23, importlib-metadata <8,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <2, packaging <25, pandas <3, protobuf >=3.12.0,<5, pyarrow <16,>=4.0.0, python >=3.10,<3.11.0a0, pytz <2025, pyyaml >=5.1,<7, querystring_parser <2, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 3778ebaeab20325513ccd5d10ae70388
name mlflow
platform linux
sha1 112d33b0736602d11417c8027a361fa074d99beb
sha256 3bd94f356ce7f0d68ceb1f84b5f20ae2b98f7c01b46742622b50614f60b65a5e
size 5137871
subdir linux-64
timestamp 1715898249721
version 2.12.2