×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:43 2025
md5 checksum 5086758a9348f1f23775917dee26eea1
arch x86_64
build py39hde10f7e_0
constrains fastapi <1, uvicorn-standard <1, tiktoken <1, boto3 >1, azure-storage-file-datalake >12, aiohttp <4, slowapi >=0.1.9,<1, azureml-core >=1.2.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, mlflow-skinny <0a0, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, pydantic >=1.0,<3, boto3 >=1.28.56,<2, google-cloud-storage >=1.30.0, watchfiles <1
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <18,>=4.0.0, python >=3.9,<3.10.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 5086758a9348f1f23775917dee26eea1
name mlflow
platform linux
sha1 e4d3248ca7be418c24517bc03201d676c27c3a74
sha256 f13c6dd9ca0b47a053860712fdc0869115d242a49abd02e06503c843799f4393
size 5603233
subdir linux-64
timestamp 1728398723164
version 2.16.2