×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:42 2025
md5 checksum e1a3f5d5498006785945c1e21159a62f
arch x86_64
build py38hde10f7e_0
constrains fastapi <1, uvicorn-standard <1, tiktoken <1, boto3 >1, azure-storage-file-datalake >12, aiohttp <4, slowapi >=0.1.9,<1, azureml-core >=1.2.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, mlflow-skinny <0a0, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, pydantic >=1.0,<3, boto3 >=1.28.56,<2, google-cloud-storage >=1.30.0, watchfiles <1
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <18,>=4.0.0, python >=3.8,<3.9.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 e1a3f5d5498006785945c1e21159a62f
name mlflow
platform linux
sha1 f50cce78b329d81b519f6dfb33367954e33fff17
sha256 092fcebccd81ec317ac6a0ffc6168eb54780f5a4b3a1f7a4b2c9d2ebac9afb39
size 5602624
subdir linux-64
timestamp 1728398776796
version 2.16.2