×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:41 2025
md5 checksum 5215d32f9d332f2f48bba04c34cf4e49
arch x86_64
build py312hfd6a04f_0
constrains fastapi <1, uvicorn-standard <1, tiktoken <1, boto3 >1, azure-storage-file-datalake >12, aiohttp <4, slowapi >=0.1.9,<1, azureml-core >=1.2.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, mlflow-skinny <0a0, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, pydantic >=1.0,<3, boto3 >=1.28.56,<2, google-cloud-storage >=1.30.0, watchfiles <1
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <18,>=4.0.0, python >=3.12,<3.13.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 5215d32f9d332f2f48bba04c34cf4e49
name mlflow
platform linux
sha1 e068d4d07c09090fbb27d39ae43ffc1747dff12c
sha256 4b56169f66e443516d97f84a3fcac44afef72bc3de5bba4405a9b9bbd4fdce70
size 6180968
subdir linux-64
timestamp 1728398884404
version 2.16.2