×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:41 2025
md5 checksum 01e9cb33b45a3e6de10b2cf875f81dbc
arch x86_64
build py311hb471519_0
constrains fastapi <1, uvicorn-standard <1, tiktoken <1, boto3 >1, azure-storage-file-datalake >12, aiohttp <4, slowapi >=0.1.9,<1, azureml-core >=1.2.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, mlflow-skinny <0a0, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, pydantic >=1.0,<3, boto3 >=1.28.56,<2, google-cloud-storage >=1.30.0, watchfiles <1
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <18,>=4.0.0, python >=3.11,<3.12.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 01e9cb33b45a3e6de10b2cf875f81dbc
name mlflow
platform linux
sha1 65ffb4a04ed1837a9350bcc07b44f17af02eb5a5
sha256 df52667d7d7313a0058539022a81a4fd6a4f0edfb8259ee00e6073e49db2634f
size 6254196
subdir linux-64
timestamp 1728398660010
version 2.16.2