×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:40 2025
md5 checksum a08f5d98c847fd88e6da753e3ec2640c
arch x86_64
build py310hde10f7e_0
constrains fastapi <1, uvicorn-standard <1, tiktoken <1, boto3 >1, azure-storage-file-datalake >12, aiohttp <4, slowapi >=0.1.9,<1, azureml-core >=1.2.0, mlserver >=1.2.0, !=1.3.1, <1.4.0, mlflow-skinny <0a0, mlserver-mlflow >=1.2.0,!=1.3.1,<1.4.0, pydantic >=1.0,<3, boto3 >=1.28.56,<2, google-cloud-storage >=1.30.0, watchfiles <1
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <18,>=4.0.0, python >=3.10,<3.11.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 a08f5d98c847fd88e6da753e3ec2640c
name mlflow
platform linux
sha1 9221cc72adb1456e355bc1732b67c9aeafa6241c
sha256 a54c8c4b09dece8da73ab54af004af2c6b73d811b21016bca79970d58ead893c
size 5620512
subdir linux-64
timestamp 1728398830750
version 2.16.2