×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:39 2025
md5 checksum dcd3f7a3f34b554163fe26590063c164
arch x86_64
build py312hfd6a04f_0
constrains mlserver-mlflow >=1.2.0,!=1.3.1, boto3 >1, uvicorn-standard <1, mlflow-skinny <0a0, boto3 >=1.28.56,<2, fastapi <1, aiohttp <4, slowapi >=0.1.9,<1, mlserver >=1.2.0, !=1.3.1, watchfiles <1, tiktoken <1, google-cloud-storage >=1.30.0, pydantic >=1.0,<3, azureml-core >=1.2.0, azure-storage-file-datalake >12, langchain >=0.1.0,<=0.3.7
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <19,>=4.0.0, python >=3.12,<3.13.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 dcd3f7a3f34b554163fe26590063c164
name mlflow
platform linux
sha1 de553649b201888a0322986e16b0f0ae272fa1bf
sha256 f5084cad3f6f392700098bd7353d3a84fb031c0aba244414999df8e0056cbde3
size 6384473
subdir linux-64
timestamp 1733140348733
version 2.18.0