×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:39 2025
md5 checksum 6623ee92cd87b32ff05589a329c06dff
arch x86_64
build py39hde10f7e_0
constrains mlserver-mlflow >=1.2.0,!=1.3.1, boto3 >1, uvicorn-standard <1, mlflow-skinny <0a0, boto3 >=1.28.56,<2, fastapi <1, aiohttp <4, slowapi >=0.1.9,<1, mlserver >=1.2.0, !=1.3.1, watchfiles <1, tiktoken <1, google-cloud-storage >=1.30.0, pydantic >=1.0,<3, azureml-core >=1.2.0, azure-storage-file-datalake >12, langchain >=0.1.0,<=0.3.7
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <19,>=4.0.0, python >=3.9,<3.10.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 6623ee92cd87b32ff05589a329c06dff
name mlflow
platform linux
sha1 9e2fa9802a2400084cf7e1525009f9cf80a22705
sha256 029f1bc51fddb7c86d5b2821b429c6c02a7b3f9da1a2b7e8d36b6f80d0502e1a
size 5808273
subdir linux-64
timestamp 1733140406036
version 2.18.0