×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:37 2025
md5 checksum c537c034cd6c95beed3abdeeb9df7713
arch x86_64
build py310hde10f7e_0
constrains mlserver-mlflow >=1.2.0,!=1.3.1, boto3 >1, uvicorn-standard <1, mlflow-skinny <0a0, boto3 >=1.28.56,<2, fastapi <1, aiohttp <4, slowapi >=0.1.9,<1, mlserver >=1.2.0, !=1.3.1, watchfiles <1, tiktoken <1, google-cloud-storage >=1.30.0, pydantic >=1.0,<3, azureml-core >=1.2.0, azure-storage-file-datalake >12, langchain >=0.1.0,<=0.3.7
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <19,>=4.0.0, python >=3.10,<3.11.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 c537c034cd6c95beed3abdeeb9df7713
name mlflow
platform linux
sha1 e4a14d90886f83b84e9462f4d380912802ebdb0a
sha256 243848565df7900895a0f6881912c8b72c7348ff0855c27471a0a21add9a6160
size 5826932
subdir linux-64
timestamp 1733140291635
version 2.18.0