×

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).

Uploaded Mon Mar 31 00:03:37 2025
md5 checksum b522fe9b84561d3142f8c484e0a83aa9
arch x86_64
build py311hb471519_0
constrains mlserver-mlflow >=1.2.0,!=1.3.1, boto3 >1, uvicorn-standard <1, mlflow-skinny <0a0, boto3 >=1.28.56,<2, fastapi <1, aiohttp <4, slowapi >=0.1.9,<1, mlserver >=1.2.0, !=1.3.1, watchfiles <1, tiktoken <1, google-cloud-storage >=1.30.0, pydantic >=1.0,<3, azureml-core >=1.2.0, azure-storage-file-datalake >12, langchain >=0.1.0,<=0.3.7
depends alembic <2,!=1.10.0, cachetools >=5.0.0,<6, click >=7.0,<9, cloudpickle <4, databricks-sdk >=0.20.0,<1, docker-py >=4.0.0,<8, flask <4, gitpython >=3.1.9,<4, graphene <4, gunicorn <24, importlib-metadata <9,>=3.7.0,!=4.7.0, jinja2 <4,>=2.11, markdown >=3.3,<4, matplotlib-base <4, numpy <3, opentelemetry-api >=1.9.0,<3, opentelemetry-sdk >=1.9.0,<3, packaging <25, pandas <3, protobuf >=3.12.0,<6, pyarrow <19,>=4.0.0, python >=3.11,<3.12.0a0, pyyaml >=5.1,<7, requests >=2.17.3,<3, scikit-learn <2, scipy <2, sqlalchemy >=1.4.0,<3, sqlparse >=0.4.0,<1
license Apache-2.0
license_family APACHE
md5 b522fe9b84561d3142f8c484e0a83aa9
name mlflow
platform linux
sha1 ac765cf7b1bb217b972fdf9a4abc3f6612a15792
sha256 690afa67a3b52b40e6276b84ba8f0b7cfdffeb5601ba1ff2cb08f6b8257ceec0
size 6453964
subdir linux-64
timestamp 1733140225314
version 2.18.0