A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Uploaded | Sun Mar 30 23:45:14 2025 |
md5 checksum | ed2f51ad1c9f4245b8239a04a921bcb4 |
arch | x86_64 |
build | py311h6a678d5_0 |
constrains | pandas>=0.24.0, scikit-learn !=0.22.0, dask >=2.0.0 |
depends | _openmp_mutex >=5.1, libgcc-ng >=11.2.0, libstdcxx-ng >=11.2.0, numpy <2.0a0, python >=3.11,<3.12.0a0, scipy |
license | MIT |
license_family | MIT |
md5 | ed2f51ad1c9f4245b8239a04a921bcb4 |
name | lightgbm |
platform | linux |
sha1 | 3d72a3f7a87c60b0313ec863e69947e91cabaaa2 |
sha256 | cfac3e275c570ce2ca438b9b42cc76e0233831219840f854dcfd8f67daeaea9a |
size | 2515879 |
subdir | linux-64 |
timestamp | 1700268183397 |
version | 4.1.0 |