ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
Uploaded | Tue Apr 1 00:45:50 2025 |
md5 checksum | fb09494559297bb93ec0914b507a2314 |
arch | x86_64 |
build | py310h06a4308_0 |
constrains | jupyter-core >=4.6.3, ipywidgets >=7.5.1, jupyter-client >=5.3.4, tangled-up-in-unicode 0.2.0 |
depends | htmlmin 0.1.12, imagehash 4.3.1, jinja2 >=2.11.1,<3.2, matplotlib-base >=3.2,<3.7, multimethod >=1.4,<1.10, numpy >=1.16.0,<1.24, pandas >1.1,<1.6,!=1.4.0, phik >=0.11.1,<0.13, pillow, pydantic >=1.8.1,<1.11, python >=3.10,<3.11.0a0, pyyaml >=5.0.0,<6.1, requests >=2.24.0,<2.29, scipy >=1.4.1,<1.10, seaborn >=0.10.1,<0.13, statsmodels >=0.13.2,<0.14, tqdm >=4.48.2,<4.65, typeguard >=2.13.2,<2.14, visions 0.7.5 |
license | MIT |
license_family | MIT |
md5 | fb09494559297bb93ec0914b507a2314 |
name | ydata-profiling |
platform | linux |
sha1 | a9d5afb09d865fd840248576e5c96783d0563b02 |
sha256 | fa74dffdc89205e6c8f7ab4cd2fbd2c5a6592d4972e98a23647d0c5f63484eaa |
size | 324731 |
subdir | linux-64 |
timestamp | 1680556017461 |
version | 4.1.1 |