ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
Uploaded | Tue Apr 1 00:45:48 2025 |
md5 checksum | f4884fe9ba6515c71fcd8dd7b09dff02 |
arch | x86_64 |
build | py311h06a4308_0 |
constrains | tangled-up-in-unicode 0.2.0, jupyter-client >=5.3.4, ipywidgets >=7.5.1, jupyter-core >=4.6.3 |
depends | dacite >=1.8, htmlmin 0.1.12.*, imagehash 4.3.1.*, jinja2 >=2.11.1,<3.2, matplotlib-base >=3.2,<3.9, multimethod >=1.4,<2, numba >=0.56.0,<1, numpy >=1.16.0,<2, pandas >1.1,<3,!=1.4.0, phik >=0.11.1,<0.13, pydantic >=2, python >=3.11,<3.12.0a0, pyyaml >=5.0.0,<6.1, requests >=2.24.0,<3, scipy >=1.4.1,<1.14, seaborn >=0.10.1,<0.14, statsmodels >=0.13.2,<1, tqdm >=4.48.2,<5, typeguard >=3,<5, visions >=0.7.5,<0.7.7, wordcloud >=1.9.1 |
license | MIT |
license_family | MIT |
md5 | f4884fe9ba6515c71fcd8dd7b09dff02 |
name | ydata-profiling |
platform | linux |
sha1 | 48944dc244dd104666c97605f3add0f857bc3cce |
sha256 | a34acb7126cd66e7f23b96e71cbc4b500bfb32a5f40ea3625420d473393757f3 |
size | 425151 |
subdir | linux-64 |
timestamp | 1715277236902 |
version | 4.8.3 |