PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
Uploaded | Mon Mar 31 23:41:06 2025 |
md5 checksum | 0137b364ebb424f66ec1149f76ae7a91 |
arch | x86_64 |
build | gpu_cuda124_py311h73f5b00_302 |
build_number | 302 |
depends | __cuda, _openmp_mutex >=5.1, blas 1.0 mkl, cuda-cudart >=12.4.127,<13.0a0, cuda-cupti >=12.4.127,<13.0a0, cuda-nvrtc >=12.4.127,<13.0a0, cuda-nvtx >=12.4.127,<13.0a0, cuda-version >=12.4,<13, cudnn >=9.1,<10.0a0, cudnn >=9.1.1.17,<10.0a0, filelock, fsspec, intel-openmp >=2023.1.0,<2024.0a0, jinja2, libabseil * cxx17*, libabseil >=20240116.2,<20240116.3.0a0, libcublas >=12.4.5.8,<13.0a0, libcufft >=11.2.1.3,<12.0a0, libcurand >=10.3.5.147,<11.0a0, libcusolver >=11.6.1.9,<12.0a0, libcusparse >=12.3.1.170,<13.0a0, libgcc-ng >=11.2.0, libprotobuf >=4.25.3,<4.25.4.0a0, libstdcxx-ng >=11.2.0, libtorch 2.5.1.*, libuv >=1.48.0,<2.0a0, magma >=2.7.1,<3.0a0, mkl >=2023.1.0,<2024.0a0, mkl-service >=2.3.0,<3.0a0, nccl >=2.21.5.1,<3.0a0, networkx, numpy >=1.21,<3, numpy >=1.24.0,<3.0.0, opentelemetry-api, python >=3.11,<3.12.0a0, setuptools, sleef >=3.5.1,<4.0a0, sympy >=1.13.1,!=1.13.2, triton 3.1.0.*, typing_extensions |
license | BSD-3-Clause |
license_family | BSD |
md5 | 0137b364ebb424f66ec1149f76ae7a91 |
name | pytorch |
platform | linux |
sha1 | 1f8ca979df9f449517c23a1b8f849fa1d0f1d404 |
sha256 | 0cd2013cc355ec4117414b73a0b64b4d14e59260c93e1d01bee5cd03a02d11bb |
size | 40814042 |
subdir | linux-64 |
timestamp | 1741656239410 |
version | 2.5.1 |