×

Use airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.

Uploaded Mon Mar 31 20:40:18 2025
md5 checksum 5232842e28d0bfeff765979e56a154a7
arch x86_64
build py310h06a4308_0
depends alembic >=1.0,<2.0, argcomplete >=1.10.0, attrs >=19.3,<19.4, cached-property >=1.5.0,<1.6.0, cattrs >=1.0,<1.1.0, colorlog >=4.0.2, configparser >=3.5.0, croniter >=0.3.17,<0.4, dill >=0.2.2,<0.4, flask >=1.1.0,<2.0, flask-admin 1.5.4, flask-appbuilder >=2.2,<2.3, flask-caching >=1.3.3, flask-login >=0.3,<0.5, flask-swagger 0.2.13, flask-wtf >=0.14.2,<0.15, funcsigs >=1.0.0,<2.0.0, future >=0.16.0,<0.19, gunicorn >=19.5.0, iso8601 >=0.1.12, jinja2 >=2.10.1, json-merge-patch 0.2, jsonschema >=3.1.0, lazy-object-proxy >=1.3.0, markdown >=2.5.2, pandas >=0.17.1, pendulum 1.4.4, psutil >=4.2.0,<6.0.0, pygments >=2.0.1,<3.0, python >=3.10,<3.11.0a0, python-daemon >=2.1.1, python-dateutil >=2.3,<3, python-graphviz >=0.12, requests >=2.20.0,<3, setproctitle >=1.1.8,<2, sqlalchemy >=1.3.0,<1.4.0, sqlalchemy-jsonfield >=0.9.0,<0.10.0, tabulate >=0.7.5,<0.9, tenacity, termcolor >=1.1.0, text-unidecode >=1.2,<2.0, thrift >=0.9.2, typing_extensions >=3.7.4, tzlocal >=1.4, unicodecsv >=0.14.1, werkzeug, zope.deprecation >=4.0,<5.0
license Apache 2.0
md5 5232842e28d0bfeff765979e56a154a7
name airflow
platform linux
sha1 7e4b330e9b58928ab5b1874b5e021d1b6651a171
sha256 7794030a3890c4fe924e7b4d70758d8db749cc17e13bdeb6441eca68178982ba
size 2626084
subdir linux-64
timestamp 1640811623023
version 1.10.12